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Outline

● Introduction to sterile neutrino
● Daya Bay
● Daya Bay + Bugey-3
● MINOS
● Daya Bay + Bugey-3 + MINOS
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This talk contains results reported 
in three papers:
Daya Bay : arXiv:1607.01174
MINOS     : arXiv:1607.01176
Combined : arXiv:1607.01177
Accepted for publication by PRL



3-flavor Neutrino Oscillation
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● 3-flavor picture is well 
established by solar, 
atmospheric, reactor, and 
accelerator experiments

● Daya Bay and MINOS were 
both designed to study 
neutrino oscillation



High Energ. 
Phys. (2013) 
2013: 50. 

Deficit

 arXiv:1607.05378

Experimental Anomalies
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J.Phys. G43 (2016) 033001

: LSND & MiniBooNE

: Gallium anomaly

: Reactor      anomaly



Three Active Neutrinos

● Only three light active 
neutrino flavors

● Any other neutrino species 
would be sterile -- not 
interacting via weak 
interaction

● Still observable via neutrino 
oscillation
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Phys. Rept. 427, 257 (2006)



3+1 Formalism

For Daya Bay                  
For MINOS

For LSND & MiniBooNE 

Define

Daya Bay
MINOS

LSND&
MiniBooNE



Daya Bay
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Design of Daya Bay
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Find → 



Detection Method

The coincidence between prompt and delayed signal provides 
powerful background rejection 10



Antineutrino Detector (AD)
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Automatic Calibration Units

NIM. A 811(2016) 133-161 Nucl. Instrum. Meth. A 773, 8 (2015) 

192 8’’ 
PMTs

20-ton Gd-LS

22-ton LS

37-ton 
Mineral Oil

● Three-zoned Antineutrino Detectors (ADs) are immersed in 
water pools, served as muon taggers and radiation shield



Installation of ADs
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Automatic Calibration Units 
(ACUs)

Antineutrino 
Detector(AD)

Water Cerenkov 
Detector

RPC

6-AD 8-AD Data Taking
20132012 2014 2015

621-day data
Sterile results

2016
1230-day data

3ν results

217 days

EH1

EH2

EH3



Antineutrino Selection
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Reject
• Muons tagged by either water Cerenkov detectors or 

AD (εμ=0.82, 0.86, and 0.98 for EH1, EH2, and EH3)
• Flashers: spontaneous PMT light emission
• Events with more than one coincidence (multiplicity 

cut) (εm=0.97, 0.98, and 0.98 for EH1, EH2, and EH3)



Energy Spectra
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EH1

EH2 EH3

621 days



3-flavor Oscillation Results
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Daya Bay@Neutrino16

1230 days



If a Light Sterile Neutrino Exists... 
...
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621 days



Analyses
● Two independent analyses

● Problem: Degree of freedom (DOF) drops when sin22θ14 → 0
○ Cannot set confidence level (CL) by Δχ2 based on DOF 

● Solution 1: Feldman-Cousin method (Analysis A)
○ C.L. determined by MC simulation of pseudo-experiments

● Solution 2: CLs method (Analysis B)

17

Event Prediction χ2

Analysis A Near → Far Full covariance 
matrix

Analysis B Huber + Mueller model
Enlarged error

Pull terms + 
covariance matrix



CLs Method
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● For each pair of (sin22θ14 , Δm2
41), is the 4ν model much 

worse than the 3ν model?

Point is excluded at ≥ (1-α) CLs, if CLs < α



CLs Method

● Δχ2 distribution can be obtained by :
○ MC simulation with pseudo-experiments 
○ Use Asimov data set (prediction without fluctuation) for 

Gaussian approximation (PRD 86 113011 (2012))

● Why CLs?
○ Solid even when we don’t know the DOF
○ Faster if we use Gaussian approximation
○ Great tool for combination (introduced later)
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Sterile Neutrino Search
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● Consistent results 
between Analysis A 
(C.L.) and Analysis B 
(CLs)

● Constraints on sin22θ14 
improves by a factor of 2 
from 6-AD to 621-day 
data

● Bugey-3 experiment is 
sensitive to higher Δm2

41

arXiv:1607.01174, accepted by PRL

Bugey-3 90% C.L.



Bugey-3 Experiment
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● 3 modules at two positions
● 3 Baselines at 15, 40, 95 m
● Reactor power: 2.8 GWth
● Each module has 600 liters of 

6Li-doped LS
● Total events: 150k

Nucl.Phys. B434 (1995) 503-534, Nucl. Instrum. Meth. A374 (1996) 164-187



Bugey-3’s Data

● Input : Observed / MC with two major modifications
● Modifications in ratios

● Modifications in cross sections:
○ Cross section is inversely proportional to neutron lifetime
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Bugey-3 Contour (Reproduced)
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● Consistent results 
between our reproduced 
contour and the original 
Bugey’s flux in raster 
scan (RS) 

● Similar exclusion region 
for the reproduced one 
with updated flux



Daya Bay + Bugey-3
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● Fitted with common 
normalization and 
oscillation parameters 

● CLs method is used for 
further combination with 
MINOS

● The combined analysis 
extends the exclusion 
region to larger Δm2

41 
regionarXiv:1607.01177



If a Light Sterile Neutrino Exists...
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At LSND best fit point Δm2
41 = 1.2 eV2, sin22θμe = 0.003

sin2θ24 = 0.027 (MINOS 90% C.L. at Δm2
41=1.2 eV2)

sin22θ14 = 0.11 



MINOS
26



MINOS Overview
● NuMI neutrino beam from 120 

GeV Main Injector-accelerator 
protons

● Measure neutrinos energy with 
two functionally identical 
iron-scintillator tracking 
calorimeters.
○ Near Detector at Fermilab

■ 1 km from target
■ 1 kton mass

○ Far Detector, deep underground 
in the Soudan mine

■ 735 km from target
■ 5.4 kton mass
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● From 2005-2012, the NuMI beam 
operated in low-energy mode
○ MINOS era
○ This analysis

● From 2013-2016, the NuMI beam 
operated in the medium energy mode 
○ MINOS+ era

MINOS Overview

28



Event Topologies
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NC

CC



Long-Baseline Sterile Searches

Neutral Current
● NC interaction rate is independent of 

oscillations of the three active flavors.
● νμ → νs oscillations reduce the NC rate 

as νs do not interact in the detector.
● Previously investigated at MINOS

○ Phys.Rev.D81 (2010) 052004
○ Phys.Rev.Lett 107 (2011) 011802

vμ Charged Current
● Sterile oscillations add modulations to 

standard 3-flavor picture.

Fit both NC and CC spectra to the 4-flavor 
model to constrain sterile mixing 
parameters.
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NC

CC



NC Event Selection
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NC/CC event separation achieved via cuts on topological quantities.

● 89% efficiency and 61% purity at 
the FD

● Main background is inelastic νμ 
CC events.

● 97% of νe CC events are 
selected as NC.



NC Event Selection

32

NC/CC event separation achieved via cuts on topological quantities.

● 89% efficiency and 61% purity at 
the FD

● Main background is inelastic νμ 
CC events.

● 97% of νe CC events are 
selected as NC.



CC Event Selection

● CC and NC events are 
separated using a 4 variable 
kNN.

● CC selection is applied to 
events failing the NC selection 
criteria.

● 86% efficiency and 99% purity 
at the FD. 

33



CC Event Selection

● CC and NC events are 
separated using a 4 variable 
kNN.

● CC selection is applied to 
events failing the NC selection 
criteria.

● 86% efficiency and 99% purity 
at the FD. 
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4-Flavor Oscillations

● Small Δm2
41:

○ Oscillations at high energies in 
the FD.

○ No oscillations at the ND.

● Medium Δm2
41:

○ Due to finite energy 

resolution, rapid oscillations at 
the FD average out.

○ Minimal oscillations at the ND.

● Large Δm2
41:

○ Rapid oscillation at the FD.
○ Large oscillations at the ND.
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MINOS 4-Flavor Analysis 
Strategy

● Fit oscillated F/N MC ratio 
directly to F/N data ratio.
○ Include a constraint on the 

integrated ND rate.

● Fix parameters this analysis is 
not sensitive to   
(δ13, δ14, δ24, and θ14) to zero. 

● Fit the NC and CC spectra 
simultaneously to determine 
θ23, θ24, θ34, Δm2

32, and 
Δm2

41. 
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Total Systematics
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If a Light Sterile Neutrino Exists...
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At LSND best fit point Δm2
41 = 1.2 eV2, sin22θμe = 0.003

sin22θ14 = 0.025 (Daya Bay/Bugey-3 90% C.L. at Δm2
41 = 1.2 eV2)

sin2θ24 = 0.12 
Δχ2 = 38.0



Disappearance Limit
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Internal allowed region 
due to degenerate 
solutions.

MINOS 90% C.L. 
exclusion limit 
ranges over 6 orders 
of magnitude and is 
the strongest 
constraint on νμ 
disappearance into 
νs for low Δm2

41.   

*J. Kopp, P. Machado, M. Maltoni, T.Schwetz, 
JHEP 1305:050 (2013_

^S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, 
E.M. Zavanin, J.Phys.G43, 033001 (2016)

*
^



Degeneracies
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where

If:
● Δ41 ≈ Δ31

● Δ41 ≈ 2Δ31

● Δ41 ≪ Δ31

Certain combinations of θ23, θ24, and 
θ34 can produce 4-flavor solutions 
nearly indistinguishable from 3-flavor.

Run each fit five times → each θ23 
octant and mass hierarchy choice and 
the degenerate region.  

Example degenerate scenarios



CLs at MINOS

● MINOS has θ34 as a nuisance 
parameter.
○ Cannot use the Daya Bay’s Gaussian 

CLs method.
○ Use a fake experiment method.

● For each (Δm2
41, θ24) point:

○ Generate 3-flavor fake experiments 
using PDG parameters.

○ Generate 4-flavor fake experiments 
using the current (Δm2

41, θ24) point.
■ θ23, θ34, and Δm2

32 set to the best fit 
to data at each grid point.

● Fit each fake experiment to both the 
3-flavor and 4-flavor hypotheses to 
build the Δχ2 distributions.

41

CLb
CLs+b

CLs = CLs+b/CLb

H1 = 4ν             H0 = 3ν



CLs Cross-Check

90% C.L. contours 
generated using the CLs 
method are consistent 
with the limit constructed 
using the 
Feldman-Cousins method.

42



Daya Bay +
Bugey-3 + 
MINOS

43



Combination Method

● Combining two disappearance 
experiments to set limits on 
sin22θμe  = sin22θ14sin2θ24.
○ Surfaces from each experiment 

share the same y-axis but have 
different x-axes.

● Feldman-Cousin involves a best fit 
will all parameters free.
○ Constraining each experiment to a 

common Δm2
41 would be difficult 

without a joint fit framework.

● CLs is an ideal solution
○ A local method

■ Δm2
41, sin22θ14, and sin2θ24 

are always fixed.

44



Combining a Single Point
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Need to be able to calculate CLs at a single (sin22θ14, sin2θ24,Δm2
41) 

point.

Draw MINOS Δχ2 

values from fake 
experiments. 

Draw Daya 
Bay/Bugey-3 Δχ2 

values from Gaussian 
distributions.

MINOS and Daya Bay/Bugey-3 
have uncorrelated systematics 
so:
Δχ2

combo = Δχ2
DB +  Δχ2

MINOS



● Convert CLs from a 2D 
function of            
(sin22θ14, sin2θ24) to 1D 
function of sin22θμe 
○ Using  sin22θμe = 

sin22θ14sin2θ24

● Multi-valued, so pick the 
largest CLs per bin as a 
conservative choice.

Combining a Δm2
41 Row

46

90% 
C.L. limit

For a fixed Δm2
41, 

calculate CLs at each 
(sin22θ14, sin2θ24) 
point.



Combined - 90% C.L.

The combined 90% C.L. limit 
excludes appearance 
allowed regions for         
Δm2

41 < 0.8 eV2.

Structure at low Δm2
41 is due 

to the degenerate regions.
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Combined - 99% C.L.

The combined 99% C.L. limit 
excludes appearance 
allowed regions for         
Δm2

41 < 0.4 eV2, and it 
excludes almost all of the 
99% C.L. global allowed 
region.
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The Future
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A preliminary analysis adding the 
first ½ of MINOS+ data shows a 
large improvement, especially at 
mid-Δχ2 values due to ~10x 
increase in statistics at high 
energy.

Sensitivities including 
expected data collected by 
Daya Bay through the end of 
2017 show a significant 
improvement in constraining 
sin22θ14.



Conclusions

MINOS and Daya Bay/Bugey-3 Combination
● Through close collaboration, Daya Bay and MINOS were able to 

use the CLs technique to combine their disappearance limits to 
extract equivalent appearance limits, assuming the 4-flavor 
model.

● Increases the tension between appearance and disappearance 
sterile neutrino searches for ∆m2

41 < 1 eV2.
50

Daya Bay
● Factor of 2 improvement 

over 6-AD analysis on the 
constraints of sin22θ14. 

● Daya Bay + Bugey-3 extends 
the exclusion contour up to 
∆m2

41 ≈ 5 eV2.

MINOS
● Improved accounting for ND 

oscillations, systematic 
uncertainties and handling of 
4-flavor degeneracies.

● Extended its 90% C.L. 
exclusion limit over 6 orders of 
magnitude in ∆m2

41.
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● On 29 June 2016, 
MINOS and MINOS+ 
officially ended data 
taking.  

● A special thanks to 
Fermilab and the 
Soudan mine crew for 
making it possible to 
collect 2.61x1021 
proton-on-target of 
data!

Final MINOS golden neutrino 
event

End of MINOS
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3+1 Formalism

For Daya Bay                 : 

54

New mass 
eigenstate

For MINOS                : 

For LSND & MiniBooNE                :

when

Sensitive to |Ue4|
2

Sensitive to |Uμ4|
2

Sensitive to |Ue4|
2|Uμ4|

2

+



3+1 Formalism
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For                                             , 

Daya Bay
MINOS

LSND&
MiniBooNE

New mass 
eigenstate



Event Rates
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621 days



Calibration
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The uncertainty of relative energy improves from 
0.35% for 6-AD to 0.2% for 621-day period

621 days



Design of Daya Bay

● Relative Measurement 
○ Near and far detectors: 

minimize reactor related uncertainties

○ Identical modules:
minimize detector related uncertainties

● Low Backgrounds
○ Large overburden at far site(860 m.w.e.)

● Large statistics
○ Large target mass: 8x20-ton detectors
○ Large neutrino flux: 6x2.9 GWth reactors
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Bugey Ratio

● Major difference is 
due to 
○ Difference between 

ILL+Vogel and 
Huber+Mueller model

○ Difference in neutron 
lifetime
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Bugey-3 Reproduced

60



Varying Baseline

61

Because we now allow for 
short-baseline oscillations, 
it is crucial that we 
account for the baseline 
varying due to the 
distribution of hadron 
decay points within the 
decay pipe.



CC Event Selection
● CC and NC events are 

separated using a 4 variable 
kNN.
○ Number of scintillator planes 

in a track.
○ Mean pulse height of all track 

hits.
○ Ratio of low pulse height to 

high pulse height hits.
○ Ratio of pulse height on the 

track to all hits.

● CC selection is applied to 
events failing the NC selection 
criteria.

● 86% efficiency and 99% purity 
at the FD. 
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Poorly Reconstructed Events
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High rate in Near Detector requires 
temporal and spatial clustering → 
may cause split or merged events

Minimize with pre-selection cuts on:
- Fraction of pulse height in cluster
- The maximum number of 

consecutive planes

Remaining data/MC disagreement is 
taken as a systematic uncertainty.

Fake NC 
event



Beam Systematics
● Due to the possibility of ND oscillations, it is 

not possible to constrain the beam flux using 
a fit to ND data.
○ Need to reassess beam systematics.

● Fit a FLUKA simulation of the NA49 target to 
the BMPT parameterization.

● Vary fit parameters within their errors to 
create a collection of physically feasible 
alternate differential cross-section 
parameterizations. 

● Scale up the errors given by the fit until the 
collection of alternate parameterizations 
cover the difference between the FLUKA MC 
and NA49 data.

● Use this collection of alternate 
parameterizations to reweight the ND and FD 
neutrino spectra and create a covariance 
matrix.

● The resulting F/N error is small.
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ND Acceptance Systematics

● Acceptance uncertainties are determined by 
comparing the effect of varying cuts on data/MC at 
the ND compared to the nominal cuts.

● Examined the effect of:
○ Varying the fiducial volume
○ Varying the containment criteria

○ Excluding tracks ending near the join between the 
calorimeter and spectrometer

○ Varying how close tracks can come to the coil hole

● Together, these have the largest effect on our 
sensitivity.
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CC and NC Selection

● MINOS was optimized for 
identifying nm CC 
interactions.

● Identifying NC events is 
more difficult.
○ 89% efficiency and 61% 

purity at the FD
○ Main background is 

inelastic nm CC events.
○ 97% of ne CC event are 

selected as NC.
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Combination Method

● MINOS has Δχ2 distributions for 3-flavor and 4-flavor fake experiments 
at each (Δm2

41, sin2θ24) grid point.
● Daya Bay and Bugey-3 have Gaussian Δχ2 3-flavor and 4-flavor 

distributions at each (Δm2
41, sin22θ14) grid point.

●  For a fixed Δm2
41, calculate CLs at each (sin22θ14, sin2θ24) point.

○ Using the distribution of Δχ2
combo for both 3-flavor truth and 4-flavor 

truth, construct the combined CLb and CLs+b. 
○ Systematic uncertainties are uncorrelated between MINOS and 

Daya Bay + Bugey-3, so Δχ2
combo  is the sum of Δχ2 drawn from the 

MINOS distribution and the Daya Bay+Bugey-3 distribution for 
either 3-flavor or 4-flavor truth.

● Pick the largest CLs for a given sin22θμe = sin22θ14sin2θ24 as a 
conservative choice.
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Degeneracies
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where

If θ23 ≈ π/2 and any of:
● Δ41 ≈ Δ31

● Δ41 ≈ 2Δ31

● Δ41 ≪ Δ31

θ24 can take on the role of θ23 leading to 4-flavor oscillations 
degenerate with the 3-flavor scenario

Run each fit five times → each θ23 octant and mass hierarchy choice 
and the degenerate region.  


